
The TinyHPC Cluster

Mukarram Ahmad

Abstract

TinyHPC is a beowulf class high performance computing cluster
with a minor physical footprint yet significant computational capacity.
The system is of the shared memory category, and uses the Message
Passing Interface (MPI) API to allow communication between nodes.
The primary intended usage of TinyHPC is to run fluid dynamics
simulations, as well as to test a new data compression technique that
uses neural networks.

1 Introduction

This section discusses the basic definition of beowulf clustering, as well as
advantages of constructing a cluster of such a configuration.

1.1 Definition

A beowulf system is a high performance computing infrastructure constructed
from commidity hardware and running open source software and operating
system. Such a setup typical consists of a server that is connected to a num-
ber of headless, diskless nodes over some form of a network [3]. Generally,
in such a system, the server node assigns diskless nodes their IP addresses,
provides support to allow each node to boot over the network, and hosts
networked storage to which all nodes have access [5]. Beowulf systems are
sometimes classified as being Class I or Class II, with the former being en-
tirely composed of commidity hardware and thus less expensive and easily
reproducible, while the latter using more specialized components to acheive
better performance at a higher cost [2].

1

1.2 Rationale

Aside from the general speedup advantages of using multiple CPUs, the
primary motivation to construct a beowulf computing cluster is the extremely
low construction cost relative to traditional high performance computing
systems. Also, since the speeds of memory modules is not necessarily at pace
with that of processors, usage of multiple sets of these executing tasks in
parallel provides a way to circumvent this gap.

2 Related Work

Mention a listing and brief descriptions of related small footprint beowulf
systems.

3 System Design

Appendix A shows the hardware configuration of TinyHPC. The following
two sections describe the system in more detail.

3.1 Hardware Setup

The TinyHPC cluster has a hybrid hardware composition, with two sets of
nodes. Table 1 describes the specifications of each set of compute nodes.

Node Set 1 Node Set 2

Motherboard Toshiba A135-S2356 Intel 815GEW
Processor Architecture Intel Pentium 4 Intel Celeron
Processor Clock Speed 1.5 GHz 1.3 GHz

Processor Cache (Level 1) 64 KB 32 KB
Processor Cache (Level 2) 1024 KB 256 KB

Main Memory 256 MB 256 MB
Network Interconnect 100 MB/s Ethernet 100 MB/s Ethernet

2

3.2 Server Disk Partitioning

The head node of the cluster contains three hard drives, with the sizes of 40
GB, 20 GB, and 10 GB respectively. For use in TinyHPC, they were set up
as follows:

Disk / Partition Size Mount Point Type Usage

Disk 1 / Partition 1 40 GB /home Ext3 Storage space for
home directory

Disk 2 / Partition 1 10 GB / Ext3 Root file system
Disk 2 / Partition 2 1 GB swap Linux swap space
Disk 3 / Partition 1 10 GB /nodes Ext3 Node root file

system

3.3 Operating System Installation

The first step was to install the base operating system for the server. Ubuntu
Server was chosen due to its lean nature in terms of initial software inclu-
sion. The installation disk was used to customize the disks according the
table listed in the previous section. The operating system installation then
proceeded as follows:

• Ubuntu Server was installed with the root filesystem in the first par-
tition of the second disk, home directory in the first disk, and swap
space in the second partition of the second disk. The third disk was
assigned a manual mount point of /nodes. All partitions except swap
were Ext3 journaling filesystems.

• The installation was repeated (disk partitioning skipped this time, since
this was already done), and this time, the entire filesystem was installed
on the third disk.

3.4 Operating System Customization

The first step was to install the required packages to the rather basic Ubuntu
Server installation. A connection to the internet was hence required, and

3

the second network card of the head node was used for this purpose. The
following lines were added to the /etc/network/interfaces file:

auto eth1

iface eth1 inet dhcp

This loads the interface eth1 on startup, and instructs it to gets its con-
figuration information via DHCP. The next step was to update the package
lists. All the sources (except the CD) were uncommented from the /etc/apt/-
sources.list file, and the following command was issued to update the package
lists:

sudo apt -get update

The packages were then downloaded and installed; it is important to note
that the process was repeated for the nodes root file system also,
by chrooting to the /nodes directory as follows:

sudo chroot /nodes /bin/bash

The packages were then installed; the commands are broken down to ease
later explanation.

sudo apt -get install ssh rsh -client rsh -server

sudo apt -get install dhcp3 -server tftpd -hpa nfs -

kernel -server

sudo apt -get install python -central python -dev

python -gd python -numpy python -scipy python -

matplotlib

sudo apt -get install make gcc g++ gfortran g77 libc6

-dev

sudo apt -get install xorg fluxbox

sudo apt -get install libatlas -headers libatlas3gf -

base

In the above package installation script, the ssh and rsh software were in-
stalled in order to improve control over the nodes, and satisfy the require-
ment of the MPI packages to be later installed. The DHCP, TFTP, and NFS
servers were installed in order to provide network booting capabilities for
the client nodes. The python packages were installed for later installation of
pyMPI. Packages xorg and the Fluxbox window manager were optional, but

4

were installed for ease of use in occassional situations when performance was
not an issue. The make package, and the C, C++, and Fortran compilers
were installed to allow building software from source. Finally, the ATLAS
library was installed to later build the HPL Linpack benchmark. The instal-
lation was repeated after chrooting the /nodes directory.

Next, the operating system of the nodes was to be configured. Three things
were done here; first, the /etc/fstab file was edited to remove all lines except
that which mounts /proc, and to add:

10.11.12.1:/ home /home nfs auto defaults 0 0

This basically mounts the shared /home of the server as a replacement of its
own home directory. This is desired so that software built from source, as
well as other work files, can be easily shared among the nodes of the cluster.

After that, the inital ramdisk was customized so that the root file system
was done mounted over NFS. This was done by modifying the BOOT=local
line to

BOOT=nfs

and then regenerating the ramdisk by entering

update -initramfs -u

The names of the kernel and the initial ramdisk were then noted from the /n-
odes/boot directory. Finally, the /etc/rc.local file was modified to customize
the /etc/hosts file of the nodes on boot with appropriate IP and hostname,
and display that and a welcome screen at startup.

clear

sleep 1

echo "=================================="

echo " TinyHPC "

echo "=================================="

echo ""

echo ""

sleep 2

echo "Welcome to the TinyHPC Cluster !"

echo ""

echo ""

5

sleep 1

echo "Copyright (C) 2008 Mukarram Ahmad ."

echo ""

echo "----------------------------------"

DATEVAL=‘date ‘

MYIP=‘ifconfig | grep -i "Ethernet" -A 1|grep "inet

addr"|cut -d " " -f 12| cut -d ":" -f 2‘

echo "Today , the date is: $DATEVAL"

echo ""

echo "Also , the IP of this node is $MYIP"

echo "----------------------------------"

echo "The Boot Process is Now Complete. Please Login

Below."

echo "----------------------------------"

echo ""

rm -f /etc/hosts

touch /etc/hosts

MYHOSTNAME =‘/bin/hostname ‘

echo "$MYIP $MYHOSTNAME" > /etc/hosts

exit 0

Once the required packages were installed, and the node operating system
was modified to a satisfactory level, configuration of the server node was pro-
ceeded with. The first step was to set up network booting, so that the client
nodes could boot over PXE. To do this, the configuration files for the DHCP
server, the TFTP server, and the Network File System server had to be mod-
ified. The DHCP configuration file, located as the /etc/dhcp3/dhcpd.conf,
was modified to have the following content:

allow booting;

allow bootp;

default -lease -time 600;

max -lease -time 7200;

subnet 10.11.12.0 netmask 255.255.255.0 {

next -server 10.11.12.1;

filename "pxelinux .0";

option subnet -mask 255.255.255.0;

range 10.11.12.2 10.11.12.50;

6

}

This basically defines the network on which the DHCP server is to run on,
and the name of the file from which the nodes boot. The TFTP server’s
configuration file, with the path /etc/default/tftpd-hpa, had the following,
which basically made sure that the TFTP daemon ran on the server, and
specified the location of the TFTP root, where the files for booting were to
be later placed.

RUN_DAEMON ="yes"

OPTIONS="-l -s /tftpboot"

Finally, the /etc/exports file was set up so that the right directories were
exported via NFS - namely the /nodes directory, where the client node root
file system is held, and the /home directory, which is to be shared among
the cluster nodes, as previously described.

/nodes 10.11.12.0/24(rw,no_root_squash ,no_subtree_check)

/home 10.11.12.0/24(rw,no_root_squash ,no_subtree_check)

Having set up the configuration files, the three servers were restarted, after
issuing a command that configures the network interface over which
the booting occurs, all this being done as root:

ifconfig eth0 10.11.12.1 netmask 255.255.255.0 broadcast 10.11.12.255 up

/etc/init.d/dhcp3 -server restart

/etc/init.d/tftpd -hpa restart

/etc/init.d/nfs -kernel -server restart

After testing this setup by booting one client node to make sure it works,
SSH was set up so that it did not prompt for passwords:

ssh -keygen -q -t rsa -N "" -f "$HOME/.ssh/id_rsa"

cp $HOME /.ssh/id_rsa.pub $HOME/.ssh/authorized_keys

chmod 600 $HOME /.ssh/authorized_keys

3.5 MPI Installation

MPICH2 was chosen as the MPI implementation for the cluster and was in-
stalled in the shared /home directory with shared libraries enabled by issuing

7

as root:

mkdir $HOME/MPICH2

./ configure --prefix=$HOME/MPICH2 --enable -sharedlibs=gcc

make

make install

4 Performance Figures

The system has a theoritical peak of 28 GFLOPS ((1.5 GHz x 5 Cores x
2) + (1.3 Ghz x 5 Cores x 2))

TBD - Coming Soon

5 Applications

TBD - Coming Soon

6 Conclusion

TBD - Coming Soon

References

[1] Beowulf.org

[2] Beowulf.org class i and ii page

[3] Beowulf book

[4] Microwulf

[5] TBD

[6] TBD

8

