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Abstract

We utilize the models of [1] for the scaling laws of the vascular networks of biological
organisms in order to derive a proof for the idea that the radius of an aorta blood vessel of
an animal, r0, scales with its mass, M as M

3
8 . We then extend our logic to the length of an

aorta blood vessel, l0 and demonstrate that it scales with an organism’s mass as M
1
4 .

1 Introduction

There has been an immense increase the amount of mathematical modelling of biological processes
in the recent decades. One important biological system of interest for modellers is the vascular
blood network that services the body of an organism with blood - it has been observed that
this branching network has some quite interesting and predictable properties from a modelling
perspective, that are also highly similar to technological networks such as the World Wide Web
and citation networks such as those generated by online citation tracking websites as CiteSeer.
One pioneering work in this area of modelling blood vessel networks is that of [1], which assumes a
branching network setup of blood vessels in an organism, and derives several modelling equations
for various properties of this network, including the total number of capillaries, total volume of
blood, and the like. The same paper also touches upon the scaling laws of quantities such as
the total number of capillaries in relation to other things as mass of an organism. Interesting
observations include the derivation of the −4

3
law common in plant ecology, and a confirmation of

the 3
4

power law derived by [2] for the basal metabolic rate of an organism in relation to its mass.
We adopt the ideas of [1] in order to prove two hypothesized scaling relationships - that the radius

of an aorta scales with the mass of an organism as M
3
8 , and that the length of the aorta scales

with the same mass as M
1
4 .

2 Scaling of Radius

We begin our proof with the equation of [1] for Q0, the fluid flow rate through the aorta, as

Q0 = NkQk = Nkπr
2
kuk = NNπr

2
NuN

hence asserting that

1



Nkπr
2
kuk = NNπr

2
NuN

Since Nk represents the number of capillaries at level k, and in our case, k = 0 to represent the
aorta at the base level, we can assert that N0 = 1, and rewrite the above equation as

πr2
kuk = NNπr

2
NuN

Noticing that ukand uN are mean velocities of fluid flow, and hence constant, we can write the
above equation without the constants as the following:

r2
k = NNr

2
N

We know from [1] that an approximation for NN is

NN ≈
(
M

M0

) 3
4

Substituting this approximation expression into our previous equation, we obtain

r2
k =

(
M

M0

) 3
4

r2
N

Making r2
Nthe subject of the equation,

r2
k

r2
N

=

(
M

M0

) 3
4

and taking the square root of both sides

√ r2
k

r2
N

=
√

(
M

M0

) 3
4

we obtain

rk

rN

=

(
M

M0

) 3
8

and treating rN and M0 as proportionality constants, arrive to the conclusion that the radius of
the aorta scales with mass of an animal as M

3
8 .
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3 Scaling of Length

We now prove that the length of the aorta blood vessel should scale with mass as M
2
3 . We initiate

our proof process by iterating the equation derived by [1] for the total volume of blood serviced
by all capillaries of an organism:

V = πρ2lNNN ≈ Cl3NNN

If we use the logic from the previous section and write

Cl3kNk = Cl3NNN

we can now use the same method of proof used before; since k = 0 in our case,

Cl30N0 = Cl3NNN

and realizing that N0 = 1 because it is the number of capillaries at level zero, or the aorta itself,
the equation can be formulated as

Cl30 = Cl3NNN

We can now drop the constants, including the lN which is the total number of capillaries, and
assert that

l30 = NN

and recalling the NN =
(

M
M0

) 3
4
, say by substitution that

l30 =

(
M

M0

) 3
4

We now take the cube root of both sides to obtain

l0 =

(
M

M0

) 1
4

Treating M0 as an arbitrary constant, we have proven that the length of the aorta, l0, scales with
mass, M , as M

1
4 .

4 Conclusion

We began by an overview of the models of [1] for the vascular blood networks of animals. We then

proceeded with hypothesizing that the radius of an aorta scales with the mass of an organism as M
3
8

and the length of the aorta scales with the same mass as M
1
4 . Then, we set about to successfully

prove these two scaling relationships by a manipulation of the models of [1] for mean velocities of
fluid flow rate through blood vessels and the total volume of blood serviced by capillaries in an
animal.
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